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1. Introduction

In this paper the seismic disturbance rejection problem of civil engineering struc-
tures via state feedback control is investigated. Civil engineering structures modeled
by matrix structural analysis techniques are examined. It is assumed that the only
disturbance inputs are the seismic acceleration of the ground. The control forces
inputs are placed on nodes of the floor over the foundation (control story). Goal
of the control problem is the reduction of the displacements of the whole system.
It is found that for this structural control system the seismic disturbance rejection
problem always has a solution. The general analytical expression of the controller
is also studied.

Optimal control problems of structures have been studied in several works in
the recent years. Practical applications at multistory buildings and bridges have
also been constructed. Studying the theory of automatic control one recognizes that
the disturbance rejection problem is one of the most serious ones, with enormous
practical applications. Its aim is the elimination of the influence of the disturbances
in the system output. An earthquake, blast or wind loading is certainly a disturbance
for a civil engineering structure. In general, the disturbance rejection problem for
a civil engineering structure does not have a solution [7]. Specific control config-
urations, for instance for the shear-type frame used as an example here, make this
problem solvable. The results for left invertible systems given in [4] are applied in
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this paper. More details on the notation used here, as well as useful results on the
subject andH∞ control problems can be found in [1, 3], [8, 9].

2. Theoretical Background

In this section the disturbance rejection problem is considered on the assumption
that the full state vector can be measured. If this is not the case, one may always
use an observer to reconstruct the state variables, as it is usual in structural control
applications, and then one may continue by using the model presented here [5]. Let
us consider the system

ẋ(t) = Ax(t)+ Bz(t)+Dq(t), (1)

y(t) = Cx(t), (2)

wherex(t) ∈ <n, z(t) ∈ <m, q(t) ∈ <g, y(t) ∈ <p andA,B,C,D are constant
matrices of appropriate dimensions. The vectorq(t) denotes the unmeasurable
disturbance. In this paper this is the earthquake excitation.

In the frequency domain the above system takes the form:

sX(s) = AX(s)+ BU(s)+DZ(s), Y (s) = CX(s). (3)

Let the system be left invertible, i.e.rank
[
C(sI − A)−1B

] = m,∀s ∈ C.
The disturbance rejection problem is stated as follows: Find matricesF andG

such that when a feedback control law of the form

z = Fx +Gω (4)

is applied, whereω(t) ∈ <m is the new input vector andG is assummed to be
invertible, the following relation holds:[

C (sI − A− BF)−1BG C (sI − A− BF)−1D
] =[

H(s) Op×g
]
. (5)

The latter relation means that the influence of the disturbances on the system output
is eliminated, since:

Y (s) = C (sI − A− BF)−1BG�(s)

+ C (sI − A− BF)−1BDQ(s). (6)

In the frequency domain the relation (4) takes on the form:

Z(s) = FX(s) +G�(s),�(s) ∈ Cm. (7)

Let W(s) =i=1,α
5 Sα−1Mα−1 is applied on the system, whereMi are invertible

matrices which are defined as follows:

M0 = sdIp,Mi+1 =
[
Iqi 0
0 sIp−qi

]
,

d = min
i

{
CAi

[
B D

] 6= 0
}
, i = 0,1, · · · , (8)
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andSi are invertible matrices such that:

SiCi
[
B D

] = [ C+i
C̃i

] [
B D

] = [ C+i
0

] [
B D

]
, i = 0,1, · · · , (9)

C0 = CAd,Ci =
[
C+i−1
C̃i−1A

]
, i = 0,1, · · ·

Hereqi = rank
{
Ci
[
B D

]}
, C+i

[
B D

]
is aqi × m full row rank matrix and

α is the smallest integer for whichqα = m.
From the construction of the matricesSi,Mi andCi and by using the Cayley-

Hamilton theorem, one may readily show thatα 6 n− d − 1, as well as that:

W(s)C(sI − A)−1
[
B D

] = [ Ĉ
0

]
(sI − A)−1

[
B D

]
, Ĉ = C+α . (10)

The necessary and sufficient conditions for the above described disturbance rejec-
tion problem to have a solution are [3]:

i.

rank
[
C(sI − A)−1 [ B D

]] = m, and (11)

ii.

ĈD = 0. (12)

When these conditions are satisfied, matrixG may be any arbitrary invertible
matrix and a special solutionF ∗ exists forF , which is given by the relation:
F ∗ = − (ĈB)−1

ĈA.

LetAC = A+ BF ∗ = A− B
(
ĈB

)−1
ĈA,

L = [
D ACD · · · An−1

C D
]
, λ = rank L, andN be the(n − λ) × n full row

rank matrix which is orthogonal to the matrixL. The general analytical expression
of the disturbance rejection matrixF is:F = − (ĈB)−1

ĈA+T N, where the only
free parameters (used for economy, stability and other design requirements) are the
elements of them× (n− λ) arbitrary matrixT .

3. Mathematical Model of the Civil Structure

The dynamical model of a linearly elastic structure with am-dimensional control
vectorz reads:

Mü + ču̇+Ku = M0üg + B0z(t), (13)
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whereM is thek × k mass matrix,̌c is thek × k damping matrix,K is thek ×
k stiffness matrix,üg is g-dimensional ground earthquake acceleration vector,ü

is the k-dimensional acceleration vector,u̇ is the k-dimensional velocity vector
andu is thek-dimensional nodal displacement vector. Moreover,B0 is thek × m
control forces arrangement matrix. Here, the method of additional masses is used
for the approximate modelling of the structure with the ground support earthquake
acceleration̈ug (see, e.g., [2], page 76). The additional mass of the ground is used
for the construction of matricesM andM0 in (13). By using the substitution:̇u =
v, one gets from (13) the state space model:[

u̇

v̇

]
=
[

0 I

−M−1K −M−1č

] [
u

v

]
+
[

0
M−1M0

]
üg

+
[

0
M−1B0

]
z(t). (14)

Equivalently, these relations can be written as:

ẋ = Ax + Bz +Dq, y(t) = Cx(t), (15)

whereA,B,C,D are certainn × n, n × m, p × n, n × g (n = 2k) matrices
respectively, under the following substitutions:

A =
[

0k×k Ik×k
−M−1K −M−1č

]
,D =

[
0k×g
M−1M0

]
, B =

[
0k×m
M−1B0

]
, (16)

x =
[
u̇

v

]
=
[
u̇

u̇

]
, andq(t) = üg. (17)

The above general formulation for active control system can be specified for the
structure as follows, by accepting a diagonal structure of mass matrixM. To this
end one assumes as output the displacements of the nodes at the story over the
foundation where the control force inputs are placed (control floor), i.e.

C = [ 0m×g Im×m 0m×r 0m×g 0m×m 0m×r
]
. (18)

Let the following partition of displacement, velocity and acceleration degrees of
freedom be considered:

u = [ u1 u2 u3
]T
, u̇ = [ u̇1 u̇2 u̇3

]T
andü = [ ü1 ü2 ü3

]T
,

whereu1 is the g-dimensional vector of basement displacements,u2 is them-
dimensional vector of control floor displacements andu3 is the r-displacement
vector of the rest (upper stories) displacements. Since a localized ground story
control configuration is studied in this paper, a partitioned form of (14) is more
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relevant to our investigation. It reads: M1+Mg 0 0
0 M2 0
0 0 M3

 ü1

ü2

ü3

+
 č11 č12 č13

č21 č22 č23

č31 č32 č33

 u̇1

u̇2

u̇3


+
 K11 K12 K13

K21 K22 K23

K31 K32 K33

 u1

u2

u3

 =
 0
Bm
0

 z +
 Mg

0
0

 üg, (19)

sinceB0 =
 0g×m
Bm×m
0r×m

 , 0 =
 Mg

0m×g
0r×g

 , whereBm is anm× m invertible matrix

to ensure the linear independence of the control imputsz andMg is an appropriate
fictitious additional mass matrix of dimensiong× l. This is a general formulation,
which includes for example rocking motions, where one hasl elements of meas-
ured ground accelerations andg degrees of freedom at the ground nodes. In the
following we setM1 = M1+Mg. Thus, equations (16) take on the form:

A =
[

0k×k Ik×k
−A1 −A2

]
(20)

A1 =
 M−1

1 K11 M
−1
1 K12 M

−1
1 K13

M−1
2 K21 M

−1
2 K22 M

−1
2 K23

M−1
3 K31 M

−1
3 K32 M

−1
3 K33

 ,
A2 =

 M−1
1 č11 M

−1
1 č12 M

−1
1 č13

M−1
2 č21 M

−1
2 č22 M

−1
2 č23

M−1
3 č31 M

−1
3 č32 M

−1
3 č33

 ,

B =
[

0k×m
M−1B0

]
=


0k×m
0g×m
M−1

2 Bm
0r×m

 , and D =
[

0k×g
M−10

]
=


0k×g

M
−1
1 Mg

0m×g
0r×g

 .
Note that in (13),x, z are supposed to be dependent on time, while all other
quantities (i.e.,A,B,C,D) are assumed to be time invariant, as usual in linear
elastodynamic analysis.

4. Seismic Disturbance Rejection of Civil Structures

The general theory outlined in section two is applied on the specific model of sec-
tion three. In the case that we use the partitioned form of the structure described by
the equations (19) it will be shown that the problem of exact disturbance rejection
is solvable for the above civil engineering structure. The examined system is left
invertible since:

CB = 0, and (21)
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CAB = M−1B0 = M−1
2 Bm, (22)

i.e.CAB is an invertible matrix. For left invertible systems it is proved [3] that the
necessary and sufficient condition for the problem of disturbance rejection to have
a solution are the relations (11), (12). Relation (11) always holds true in the present
case since relation (22) holds and rankCAB = rankM−1

2 Bm = m.
In order to check condition (12) one may use the algorithm proposed in [4] and

exploit the structure form of the control system introduced in the previous section.
For this system one hasd = 1, since the relations (21), (22) hold andCAB is
an invertible matrix. Thus, one stops at the first step of the above algorithm [3]
and consequently one has:Ĉ = C0 = CA. Thus, to satisfy condition (11) it must
be:CAD = 0. But the latter relation always holds true in the control configur-
ation considered here. Thus for the localized ground story control configuration
of (18) the disturbance rejection problem is always solvable if the control floor
displacements are assumed to be the output of the system (see (17)).

So, exact disturbance rejection can be achieved for the controlled structure con-
figuration described previously. Since the required conditions are satisfied,G may
be any arbitrary invertible matrix and a special solutionF ∗ exists forF , which is
given by:

F ∗ = − (ĈB)−1
ĈA = B−1

m

[
K21 K22 K23 č21 č22 č23

]
. (23)

Let AC =
[

0k×k Ik×k
−A3 −A4

]
, with A3 =

 M−1
1 K11 M

−1
1 K12 M

−1
1 K13

0m×g 0m×m 0m×n3

M−1
3 K31 M

−1
3 K32 M

−1
3 K33

,

A4 =
 M−1

1 č11 M
−1
1 č12 M

−1
1 č13

0m×g 0m×m 0m×n3

M−1
3 č31 M

−1
3 č32 M

−1
3 č33

, L = [ D ACD · · · An−1
C D

]
,

λ = rank L andN the(n− λ)× n full row rank matrix which is orthogonal to the
matrixL. The general analytical expression of the disturbance rejection matrixF

is [6]: F = F ∗ + TN, where the only free parameters (used for economy, stability
etc.) are the elements of them× (n− λ) arbitrary matrixT . It is plausible that for
controllable systems the solution for the matrixF is F ∗, sinceN = 0.

5. Example: Shear-type Frame

The above general results have an application in shear-type frames. According to
the shear-type frame concept, horizontal beams are supposed to be rigid. Thus ex-
ternal action on one story is concentrated in two consecutive stories and a control at
the ground story can produce a rigid body motion at the upper stories. So, by elim-
inating displacements of the control floor (output), one achieves the elimination of
the displacements of all upper stories as well. The two-story, single-bay steel frame
of Fig. 1 is considered. All data are in compatible units in this academic example.
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Figure 1.

We assume that the masses arem1 = m2 = m3 = 16, the additional mass is set
equal tomg = 5000(∼= 100×∑i=1,3mi) and that only one control force is applied,
i.e.,m = 1 and B0 = [010]T . Moreover, in this problem one hask = 3 degrees of
freedom and one horizontal base acceleration (g = 1). The stiffness matrix is set
equal to

K =
 1500 −1500 0
−1500 3000 0

0 −1500 1500

 ,
under the assumption of equal storeys with equivalent shear stiffness equal to
1500 for each story. A simple dampinǧc = diag {1.6} is assumed. Finally, the
displacement of the first story is measured, i.e.,y = u2 andC = [010000].

We these data one has, for example:x = [ u1 u2 u3 u̇1 u̇2 u̇3
]T

and

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.2990 0.2990 0 −0.0003 0 0
93.7500 −187.5000 93.7500 0 −0.1000 0

0 93.7500 −93.7500 0 0 −0.1000

 .

Application of the method presented in this paper yields the control lawz = Fx,
with F ∗ given by (23):

F ∗ = 1000.0× [ −1.5000 3.0000 1.5000 0 0.0016 0
]
.

L =


0 312.50 -0.0937
0 0 0
0 0 0

312.50 -0.0937 -93.4375
0 0 0
0 0 0

 andN = [0.2990 0,000299 1].
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